337 research outputs found

    A newsoil roughness parameter for themodelling of radar backscattering over bare soil

    Get PDF
    International audienceThe characterisation of soil surface roughness is a key requirement for the correct analysis of radar backscattering behaviour. It is noteworthy that an increase in the number of surface roughness parameters in a model also increases the difficulty with which data can be inverted for the purposes of estimating soil parameters. In this paper, a new description of soil surface roughness is proposed for microwave applications. This is based on an original roughness parameter, Zg, which combines the three most commonly used soil parameters: root mean surface height, correlation length, and correlation function shape, into just one parameter. Numerical modelling, based on the moment method and integral equations, is used to evaluate the relevance of this approach. It is applied over a broad dataset of numerically generated surfaces characterised by a large range of surface roughness parameters. A strong correlation is observed between this new parameter and the radar backscattering simulations, for the HH and VV polarisations in the C and X bands. It is proposed to validate this approach using data acquired in the C and X bands, at several agricultural sites in France. It was found that the parameter Zg has a high potential for the analysis of surface roughness using radar measurements. An empirical model is proposed for the simulation of backscattered radar signals over bare soil

    Multitemporal Observations of Sugarcane by TerraSAR-X Images

    Get PDF
    The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island (located in the Indian Ocean). Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height and NDVI (Normalized Difference Vegetation Index). The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). Results also showed that the co-polarizations channels (HH and VV) were well correlated. High correlation between SAR signal and NDVI calculated from SPOT-4/5 images was observed. TerraSAR data showed that after strong rains the soil contribution to the backscattering of sugarcane fields can be important for canes with heights of terminal visible dewlap (htvd) less than 50 cm (total cane heights around 155 cm). This increase in radar signal after strong rains could involve an ambiguity between young and mature canes. Indeed, the radar signal on TerraSAR images acquired in wet soil conditions could be of the same order for fields recently harvested and mature sugarcane fields, making difficult the detection of cuts. Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidence angles of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired less than two or three months after the cut. The radar signal decreases about 5dB for images acquired some days after the cut and 3 dB for data acquired two month after the cut (VV-37°). The difference in radar signal becomes negligible (<1 dB) between harvested fields and mature canes for sugarcane harvested since three months or more

    Sensitivity of Main Polarimetric Parameters of Multifrequency Polarimetric SAR Data to Soil Moisture and Surface Roughness Over Bare Agricultural Soils

    Get PDF
    International audienceThe potential of polarimetric synthetic aperture radar data for the soil surface characterization of bare agricultural soils was investigated by using air- and spaceborne data acquired by Radar Aéroporté Multi-Spectral d'Etude des Signatures (RAMSES), Système Expérimental de Télédétection Hyperfréquence Imageur (SETHI), and RADARSAT-2 sensors over several study sites in France. Fully polarimetric data at ultrahigh frequency, X-, C-, L-, and P-bands were compared. The results show that the main polarimetric parameters studied (entropy, α angle, and anisotropy) are not very sensitive to the variation of the soil surface parameters. Low correlations are observed between the polarimetric and soil parameters (moisture content and surface roughness). Thus, the polarimetric parameters are not very relevant to the characterization of the soil surface over bare agricultural areas

    Hydrographic Network Extraction from Radar Satellite Images using a Hierarchical Model within a Stochastic Geometry Framework

    Get PDF
    This report presents a two-step algorithm for unsupervised extraction of hydrographic networks from satellite images, that exploits the tree structures of such networks. First, the thick branches of the network are detected by an efficient algorithm based on a Markov random field. Second, the line branches are extracted using a recursive algorithm based on a hierarchical model of the hydrographic network, in which the tributaries of a given river are modeled by an object process (or a marked point process) defined within the neighborhood of this river. Optimization of each point process is done via simulated annealing using a reversible jump Markov chain Monte Carlo algorithm. We obtain encouraging results in terms of omissions and overdetections on a radar satellite image

    Toward an Operational Bare Soil Moisture Mapping Using TerraSAR-X Data Acquired Over Agricultural Areas

    Get PDF
    International audienceTerraSAR-X data are processed for an "operational" mapping of bare soils moisture in agricultural areas. Empirical relationships between TerraSAR-X signal and soil moisture were established and validated over different North European agricultural study sites. The results show that the mean error on the soil moisture estimation is less than 4% regardless of the TerraSAR-X configuration (incidence angle, polarization) and the soil surface characteristics (soil surface roughness, soil composition). Furthermore, the potential of TerraSAR-X data (signal, texture features) to discriminate bare soils from other land cover classes in an agricultural watershed was evaluated. The mean signal backscattered from bare soils can be easily differentiated from signals from other land cover classes when the neighboring plots are covered by fully developed crops. This was observed regardless of the TerraSAR-X configuration and the soil moisture conditions. When neighboring plots are covered by early growth crops, a TerraSAR-X image acquired under wet conditions can be useful for discriminating bare soils. Bare soil masks were calculated by object-oriented classifications ofmono-configuration TerraSAR-Xdata. The overall accuracies of the bare soils mapping were higher than 84% for validation based on object and pixel. The bare soils mapping method and the soil moisture relationships were applied to TerraSAR-X images to generate soil moisture maps. The results show that TerraSAR-X sensors provide useful data for monitoring the spatial variations of soil moisture at the within-plot scale. The methods of bare soils moisture mapping developed in this paper can be used in operational applications in agriculture, and hydrology
    • …
    corecore